Anisotropic Multicenter Bonding and High Thermoelectric Performance in Electron-Poor CdSb

2017年03月05日 23:39  点击:[]

Author:

    S Wang,J Yang,L Wu,P Wei,J Yang,...


Abstract:

    Long-standing challenges to simultaneously accomplish crystal-like electrical transport and glass-like thermal transport in materials hinder the development of thermoelectric energy conversion technologies. We show that the unusual combination of these transport properties can be realized in electron-poor II-V semiconductor CdSb. Anisotropic multicenter bonding in CdSb is essential to both electrical and thermal transport. The electron-deficiency-sharing multicenter interactions lead to low overall ionicity and hence relatively high carrier weighted mobility and power factor. The bond anisotropy causes large lattice anharmonicity, which coupled with low cutoff frequency of the longitudinal acoustic branch and low sound velocity, gives rise to intrinsically low lattice thermal conductivity, approaching the glass-limit at elevated temperatures. A maximum thermoelectric figure of merit ZT of similar to 1.3 at 560 K and an average ZT of 1.0 between 300 K and 600 K are achieved for the 0.5 at. % Ag-doped sample, which makes CdSb an attractive candidate for low-intermediate temperature or multistage power generations. Our study advocates the search for high efficiency thermoelectric materials in compounds with anisotropic two- and multicenter bonding

 

Download-Link

 

上一条:Toward high capacity and stable manganese-spinel electrode materials: A case study of Ti-substituted system
下一条:Conductivity-limiting bipolar thermal conductivity in semiconductors

关闭

版权所有 ? 上海大学    沪ICP备09014157   地址:上海市宝山区上大路99号(周边交通)   邮编:200444   电话查询
技术支持:上海大学信息化工作办公室   联系我们